Metamath Proof Explorer


Theorem ltrn11

Description: One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b B = Base K
ltrn1o.h H = LHyp K
ltrn1o.t T = LTrn K W
Assertion ltrn11 K V W H F T X B Y B F X = F Y X = Y

Proof

Step Hyp Ref Expression
1 ltrn1o.b B = Base K
2 ltrn1o.h H = LHyp K
3 ltrn1o.t T = LTrn K W
4 simp1l K V W H F T X B Y B K V
5 eqid LAut K = LAut K
6 2 5 3 ltrnlaut K V W H F T F LAut K
7 6 3adant3 K V W H F T X B Y B F LAut K
8 simp3l K V W H F T X B Y B X B
9 simp3r K V W H F T X B Y B Y B
10 1 5 laut11 K V F LAut K X B Y B F X = F Y X = Y
11 4 7 8 9 10 syl22anc K V W H F T X B Y B F X = F Y X = Y