Metamath Proof Explorer


Theorem ltrn11

Description: One-to-one property of a lattice translation. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrn1o.b B=BaseK
ltrn1o.h H=LHypK
ltrn1o.t T=LTrnKW
Assertion ltrn11 KVWHFTXBYBFX=FYX=Y

Proof

Step Hyp Ref Expression
1 ltrn1o.b B=BaseK
2 ltrn1o.h H=LHypK
3 ltrn1o.t T=LTrnKW
4 simp1l KVWHFTXBYBKV
5 eqid LAutK=LAutK
6 2 5 3 ltrnlaut KVWHFTFLAutK
7 6 3adant3 KVWHFTXBYBFLAutK
8 simp3l KVWHFTXBYBXB
9 simp3r KVWHFTXBYBYB
10 1 5 laut11 KVFLAutKXBYBFX=FYX=Y
11 4 7 8 9 10 syl22anc KVWHFTXBYBFX=FYX=Y