Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrn11
Next ⟩
ltrncnvnid
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrn11
Description:
One-to-one property of a lattice translation.
(Contributed by
NM
, 20-May-2012)
Ref
Expression
Hypotheses
ltrn1o.b
⊢
B
=
Base
K
ltrn1o.h
⊢
H
=
LHyp
⁡
K
ltrn1o.t
⊢
T
=
LTrn
⁡
K
⁡
W
Assertion
ltrn11
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
F
⁡
X
=
F
⁡
Y
↔
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
ltrn1o.b
⊢
B
=
Base
K
2
ltrn1o.h
⊢
H
=
LHyp
⁡
K
3
ltrn1o.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
simp1l
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
K
∈
V
5
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
6
2
5
3
ltrnlaut
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
→
F
∈
LAut
⁡
K
7
6
3adant3
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
F
∈
LAut
⁡
K
8
simp3l
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
X
∈
B
9
simp3r
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
Y
∈
B
10
1
5
laut11
⊢
K
∈
V
∧
F
∈
LAut
⁡
K
∧
X
∈
B
∧
Y
∈
B
→
F
⁡
X
=
F
⁡
Y
↔
X
=
Y
11
4
7
8
9
10
syl22anc
⊢
K
∈
V
∧
W
∈
H
∧
F
∈
T
∧
X
∈
B
∧
Y
∈
B
→
F
⁡
X
=
F
⁡
Y
↔
X
=
Y