Metamath Proof Explorer


Theorem ltsub2dd

Description: Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
ltadd1dd.4 φA<B
Assertion ltsub2dd φCB<CA

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 ltadd1dd.4 φA<B
5 1 2 3 ltsub2d φA<BCB<CA
6 4 5 mpbid φCB<CA