Metamath Proof Explorer


Theorem lvolbase

Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolbase.b B=BaseK
lvolbase.v V=LVolsK
Assertion lvolbase XVXB

Proof

Step Hyp Ref Expression
1 lvolbase.b B=BaseK
2 lvolbase.v V=LVolsK
3 n0i XV¬V=
4 2 eqeq1i V=LVolsK=
5 3 4 sylnib XV¬LVolsK=
6 fvprc ¬KVLVolsK=
7 5 6 nsyl2 XVKV
8 eqid K=K
9 eqid LPlanesK=LPlanesK
10 1 8 9 2 islvol KVXVXBxLPlanesKxKX
11 10 simprbda KVXVXB
12 7 11 mpancom XVXB