Metamath Proof Explorer


Theorem islvol

Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolset.b B=BaseK
lvolset.c C=K
lvolset.p P=LPlanesK
lvolset.v V=LVolsK
Assertion islvol KAXVXByPyCX

Proof

Step Hyp Ref Expression
1 lvolset.b B=BaseK
2 lvolset.c C=K
3 lvolset.p P=LPlanesK
4 lvolset.v V=LVolsK
5 1 2 3 4 lvolset KAV=xB|yPyCx
6 5 eleq2d KAXVXxB|yPyCx
7 breq2 x=XyCxyCX
8 7 rexbidv x=XyPyCxyPyCX
9 8 elrab XxB|yPyCxXByPyCX
10 6 9 bitrdi KAXVXByPyCX