Metamath Proof Explorer


Theorem lvolset

Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses lvolset.b B=BaseK
lvolset.c C=K
lvolset.p P=LPlanesK
lvolset.v V=LVolsK
Assertion lvolset KAV=xB|yPyCx

Proof

Step Hyp Ref Expression
1 lvolset.b B=BaseK
2 lvolset.c C=K
3 lvolset.p P=LPlanesK
4 lvolset.v V=LVolsK
5 elex KAKV
6 fveq2 k=KBasek=BaseK
7 6 1 eqtr4di k=KBasek=B
8 fveq2 k=KLPlanesk=LPlanesK
9 8 3 eqtr4di k=KLPlanesk=P
10 fveq2 k=Kk=K
11 10 2 eqtr4di k=Kk=C
12 11 breqd k=KykxyCx
13 9 12 rexeqbidv k=KyLPlaneskykxyPyCx
14 7 13 rabeqbidv k=KxBasek|yLPlaneskykx=xB|yPyCx
15 df-lvols LVols=kVxBasek|yLPlaneskykx
16 1 fvexi BV
17 16 rabex xB|yPyCxV
18 14 15 17 fvmpt KVLVolsK=xB|yPyCx
19 4 18 eqtrid KVV=xB|yPyCx
20 5 19 syl KAV=xB|yPyCx