Metamath Proof Explorer
Description: The third Mersenne number M_3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m3prm |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cu2 |
|
| 2 |
1
|
oveq1i |
|
| 3 |
|
7p1e8 |
|
| 4 |
|
8cn |
|
| 5 |
|
ax-1cn |
|
| 6 |
|
7cn |
|
| 7 |
4 5 6
|
subadd2i |
|
| 8 |
3 7
|
mpbir |
|
| 9 |
2 8
|
eqtri |
|
| 10 |
|
7prm |
|
| 11 |
9 10
|
eqeltri |
|