Metamath Proof Explorer


Theorem m3prm

Description: The third Mersenne number M_3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion m3prm 2 3 1

Proof

Step Hyp Ref Expression
1 cu2 2 3 = 8
2 1 oveq1i 2 3 1 = 8 1
3 7p1e8 7 + 1 = 8
4 8cn 8
5 ax-1cn 1
6 7cn 7
7 4 5 6 subadd2i 8 1 = 7 7 + 1 = 8
8 3 7 mpbir 8 1 = 7
9 2 8 eqtri 2 3 1 = 7
10 7prm 7
11 9 10 eqeltri 2 3 1