Metamath Proof Explorer
Description: The third Mersenne number M_3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m3prm |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cu2 |
|
2 |
1
|
oveq1i |
|
3 |
|
7p1e8 |
|
4 |
|
8cn |
|
5 |
|
ax-1cn |
|
6 |
|
7cn |
|
7 |
4 5 6
|
subadd2i |
|
8 |
3 7
|
mpbir |
|
9 |
2 8
|
eqtri |
|
10 |
|
7prm |
|
11 |
9 10
|
eqeltri |
|