Metamath Proof Explorer


Theorem maducoevalmin1

Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses maducoevalmin1.a A=NMatR
maducoevalmin1.b B=BaseA
maducoevalmin1.d D=NmaDetR
maducoevalmin1.j J=NmaAdjuR
Assertion maducoevalmin1 MBINHNIJMH=DHNminMatR1RMI

Proof

Step Hyp Ref Expression
1 maducoevalmin1.a A=NMatR
2 maducoevalmin1.b B=BaseA
3 maducoevalmin1.d D=NmaDetR
4 maducoevalmin1.j J=NmaAdjuR
5 eqid 1R=1R
6 eqid 0R=0R
7 1 3 4 2 5 6 maducoeval MBINHNIJMH=DiN,jNifi=Hifj=I1R0RiMj
8 eqid NminMatR1R=NminMatR1R
9 1 2 8 5 6 minmar1val MBHNINHNminMatR1RMI=iN,jNifi=Hifj=I1R0RiMj
10 9 3com23 MBINHNHNminMatR1RMI=iN,jNifi=Hifj=I1R0RiMj
11 10 eqcomd MBINHNiN,jNifi=Hifj=I1R0RiMj=HNminMatR1RMI
12 11 fveq2d MBINHNDiN,jNifi=Hifj=I1R0RiMj=DHNminMatR1RMI
13 7 12 eqtrd MBINHNIJMH=DHNminMatR1RMI