Metamath Proof Explorer


Theorem map0g

Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion map0g AVBWAB=A=B

Proof

Step Hyp Ref Expression
1 n0 AffA
2 fconst6g fAB×f:BA
3 elmapg AVBWB×fABB×f:BA
4 2 3 imbitrrid AVBWfAB×fAB
5 ne0i B×fABAB
6 4 5 syl6 AVBWfAAB
7 6 exlimdv AVBWffAAB
8 1 7 biimtrid AVBWAAB
9 8 necon4d AVBWAB=A=
10 f0 :A
11 feq2 B=:BA:A
12 10 11 mpbiri B=:BA
13 elmapg AVBWAB:BA
14 12 13 imbitrrid AVBWB=AB
15 ne0i ABAB
16 14 15 syl6 AVBWB=AB
17 16 necon2d AVBWAB=B
18 9 17 jcad AVBWAB=A=B
19 oveq1 A=AB=B
20 map0b BB=
21 19 20 sylan9eq A=BAB=
22 18 21 impbid1 AVBWAB=A=B