Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdhval0
Next ⟩
mapdhval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapdhval0
Description:
Lemmma for ~? mapdh .
(Contributed by
NM
, 3-Apr-2015)
Ref
Expression
Hypotheses
mapdh.q
⊢
Q
=
0
C
mapdh.i
⊢
I
=
x
∈
V
⟼
if
2
nd
⁡
x
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
2
nd
⁡
x
=
J
⁡
h
∧
M
⁡
N
⁡
1
st
⁡
1
st
⁡
x
-
˙
2
nd
⁡
x
=
J
⁡
2
nd
⁡
1
st
⁡
x
R
h
mapdh0.o
⊢
0
˙
=
0
U
mapdh0.x
⊢
φ
→
X
∈
A
mapdh0.f
⊢
φ
→
F
∈
B
Assertion
mapdhval0
⊢
φ
→
I
⁡
X
F
0
˙
=
Q
Proof
Step
Hyp
Ref
Expression
1
mapdh.q
⊢
Q
=
0
C
2
mapdh.i
⊢
I
=
x
∈
V
⟼
if
2
nd
⁡
x
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
2
nd
⁡
x
=
J
⁡
h
∧
M
⁡
N
⁡
1
st
⁡
1
st
⁡
x
-
˙
2
nd
⁡
x
=
J
⁡
2
nd
⁡
1
st
⁡
x
R
h
3
mapdh0.o
⊢
0
˙
=
0
U
4
mapdh0.x
⊢
φ
→
X
∈
A
5
mapdh0.f
⊢
φ
→
F
∈
B
6
3
fvexi
⊢
0
˙
∈
V
7
6
a1i
⊢
φ
→
0
˙
∈
V
8
1
2
4
5
7
mapdhval
⊢
φ
→
I
⁡
X
F
0
˙
=
if
0
˙
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
0
˙
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
0
˙
=
J
⁡
F
R
h
9
eqid
⊢
0
˙
=
0
˙
10
9
iftruei
⊢
if
0
˙
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
0
˙
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
0
˙
=
J
⁡
F
R
h
=
Q
11
8
10
eqtrdi
⊢
φ
→
I
⁡
X
F
0
˙
=
Q