Metamath Proof Explorer


Theorem mapdom3

Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Assertion mapdom3 AVBWBAAB

Proof

Step Hyp Ref Expression
1 n0 BxxB
2 simp1 AVBWxBAV
3 simp3 AVBWxBxB
4 2 3 mapsnend AVBWxBAxA
5 4 ensymd AVBWxBAAx
6 simp2 AVBWxBBW
7 3 snssd AVBWxBxB
8 ssdomg BWxBxB
9 6 7 8 sylc AVBWxBxB
10 vex xV
11 10 snnz x
12 simpl x=A=x=
13 12 necon3ai x¬x=A=
14 11 13 ax-mp ¬x=A=
15 mapdom2 xB¬x=A=AxAB
16 9 14 15 sylancl AVBWxBAxAB
17 endomtr AAxAxABAAB
18 5 16 17 syl2anc AVBWxBAAB
19 18 3expia AVBWxBAAB
20 19 exlimdv AVBWxxBAAB
21 1 20 biimtrid AVBWBAAB
22 21 3impia AVBWBAAB