Metamath Proof Explorer
Description: Lemma for mapdpg . Baer p. 45 line 12: "Then we have Gy' =
Gy'' and G(x'-y') = G(x'-y'')." (Contributed by NM, 21-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mapdpg.h |
|
|
|
mapdpg.m |
|
|
|
mapdpg.u |
|
|
|
mapdpg.v |
|
|
|
mapdpg.s |
|
|
|
mapdpg.z |
|
|
|
mapdpg.n |
|
|
|
mapdpg.c |
|
|
|
mapdpg.f |
|
|
|
mapdpg.r |
|
|
|
mapdpg.j |
|
|
|
mapdpg.k |
|
|
|
mapdpg.x |
|
|
|
mapdpg.y |
|
|
|
mapdpg.g |
|
|
|
mapdpg.ne |
|
|
|
mapdpg.e |
|
|
|
mapdpgem25.h1 |
|
|
|
mapdpgem25.i1 |
|
|
Assertion |
mapdpglem25 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
|
2 |
|
mapdpg.m |
|
3 |
|
mapdpg.u |
|
4 |
|
mapdpg.v |
|
5 |
|
mapdpg.s |
|
6 |
|
mapdpg.z |
|
7 |
|
mapdpg.n |
|
8 |
|
mapdpg.c |
|
9 |
|
mapdpg.f |
|
10 |
|
mapdpg.r |
|
11 |
|
mapdpg.j |
|
12 |
|
mapdpg.k |
|
13 |
|
mapdpg.x |
|
14 |
|
mapdpg.y |
|
15 |
|
mapdpg.g |
|
16 |
|
mapdpg.ne |
|
17 |
|
mapdpg.e |
|
18 |
|
mapdpgem25.h1 |
|
19 |
|
mapdpgem25.i1 |
|
20 |
18
|
simprd |
|
21 |
20
|
simpld |
|
22 |
19
|
simprd |
|
23 |
22
|
simpld |
|
24 |
21 23
|
eqtr3d |
|
25 |
20
|
simprd |
|
26 |
22
|
simprd |
|
27 |
25 26
|
eqtr3d |
|
28 |
24 27
|
jca |
|