Metamath Proof Explorer


Theorem mapsnf1o

Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis ixpsnf1o.f F=xAI×x
Assertion mapsnf1o AVIWF:A1-1 ontoAI

Proof

Step Hyp Ref Expression
1 ixpsnf1o.f F=xAI×x
2 1 ixpsnf1o IWF:A1-1 ontoyIA
3 2 adantl AVIWF:A1-1 ontoyIA
4 snex IV
5 ixpconstg IVAVyIA=AI
6 5 eqcomd IVAVAI=yIA
7 4 6 mpan AVAI=yIA
8 7 adantr AVIWAI=yIA
9 8 f1oeq3d AVIWF:A1-1 ontoAIF:A1-1 ontoyIA
10 3 9 mpbird AVIWF:A1-1 ontoAI