Metamath Proof Explorer


Theorem ixpsnf1o

Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis ixpsnf1o.f F=xAI×x
Assertion ixpsnf1o IVF:A1-1 ontoyIA

Proof

Step Hyp Ref Expression
1 ixpsnf1o.f F=xAI×x
2 snex IV
3 snex xV
4 2 3 xpex I×xV
5 4 a1i IVxAI×xV
6 vex aV
7 6 rnex ranaV
8 7 uniex ranaV
9 8 a1i IVayIAranaV
10 sneq b=Ib=I
11 10 xpeq1d b=Ib×x=I×x
12 11 eqeq2d b=Ia=b×xa=I×x
13 12 anbi2d b=IxAa=b×xxAa=I×x
14 elixpsn bVaybAcAa=bc
15 14 elv aybAcAa=bc
16 10 ixpeq1d b=IybA=yIA
17 16 eleq2d b=IaybAayIA
18 15 17 bitr3id b=IcAa=bcayIA
19 18 anbi1d b=IcAa=bcx=ranaayIAx=rana
20 vex bV
21 vex xV
22 20 21 xpsn b×x=bx
23 22 eqeq2i a=b×xa=bx
24 23 anbi2i xAa=b×xxAa=bx
25 eqid bx=bx
26 opeq2 c=xbc=bx
27 26 sneqd c=xbc=bx
28 27 rspceeqv xAbx=bxcAbx=bc
29 25 28 mpan2 xAcAbx=bc
30 20 21 op2nda ranbx=x
31 30 eqcomi x=ranbx
32 29 31 jctir xAcAbx=bcx=ranbx
33 eqeq1 a=bxa=bcbx=bc
34 33 rexbidv a=bxcAa=bccAbx=bc
35 rneq a=bxrana=ranbx
36 35 unieqd a=bxrana=ranbx
37 36 eqeq2d a=bxx=ranax=ranbx
38 34 37 anbi12d a=bxcAa=bcx=ranacAbx=bcx=ranbx
39 32 38 syl5ibrcom xAa=bxcAa=bcx=rana
40 39 imp xAa=bxcAa=bcx=rana
41 vex cV
42 20 41 op2nda ranbc=c
43 42 eqeq2i x=ranbcx=c
44 eqidd cAbc=bc
45 44 ancli cAcAbc=bc
46 eleq1w x=cxAcA
47 opeq2 x=cbx=bc
48 47 sneqd x=cbx=bc
49 48 eqeq2d x=cbc=bxbc=bc
50 46 49 anbi12d x=cxAbc=bxcAbc=bc
51 45 50 syl5ibrcom cAx=cxAbc=bx
52 43 51 biimtrid cAx=ranbcxAbc=bx
53 rneq a=bcrana=ranbc
54 53 unieqd a=bcrana=ranbc
55 54 eqeq2d a=bcx=ranax=ranbc
56 eqeq1 a=bca=bxbc=bx
57 56 anbi2d a=bcxAa=bxxAbc=bx
58 55 57 imbi12d a=bcx=ranaxAa=bxx=ranbcxAbc=bx
59 52 58 syl5ibrcom cAa=bcx=ranaxAa=bx
60 59 rexlimiv cAa=bcx=ranaxAa=bx
61 60 imp cAa=bcx=ranaxAa=bx
62 40 61 impbii xAa=bxcAa=bcx=rana
63 24 62 bitri xAa=b×xcAa=bcx=rana
64 13 19 63 vtoclbg IVxAa=I×xayIAx=rana
65 1 5 9 64 f1od IVF:A1-1 ontoyIA