| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixpsnf1o.f |
|
| 2 |
|
snex |
|
| 3 |
|
snex |
|
| 4 |
2 3
|
xpex |
|
| 5 |
4
|
a1i |
|
| 6 |
|
vex |
|
| 7 |
6
|
rnex |
|
| 8 |
7
|
uniex |
|
| 9 |
8
|
a1i |
|
| 10 |
|
sneq |
|
| 11 |
10
|
xpeq1d |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
12
|
anbi2d |
|
| 14 |
|
elixpsn |
|
| 15 |
14
|
elv |
|
| 16 |
10
|
ixpeq1d |
|
| 17 |
16
|
eleq2d |
|
| 18 |
15 17
|
bitr3id |
|
| 19 |
18
|
anbi1d |
|
| 20 |
|
vex |
|
| 21 |
|
vex |
|
| 22 |
20 21
|
xpsn |
|
| 23 |
22
|
eqeq2i |
|
| 24 |
23
|
anbi2i |
|
| 25 |
|
eqid |
|
| 26 |
|
opeq2 |
|
| 27 |
26
|
sneqd |
|
| 28 |
27
|
rspceeqv |
|
| 29 |
25 28
|
mpan2 |
|
| 30 |
20 21
|
op2nda |
|
| 31 |
30
|
eqcomi |
|
| 32 |
29 31
|
jctir |
|
| 33 |
|
eqeq1 |
|
| 34 |
33
|
rexbidv |
|
| 35 |
|
rneq |
|
| 36 |
35
|
unieqd |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
34 37
|
anbi12d |
|
| 39 |
32 38
|
syl5ibrcom |
|
| 40 |
39
|
imp |
|
| 41 |
|
vex |
|
| 42 |
20 41
|
op2nda |
|
| 43 |
42
|
eqeq2i |
|
| 44 |
|
eqidd |
|
| 45 |
44
|
ancli |
|
| 46 |
|
eleq1w |
|
| 47 |
|
opeq2 |
|
| 48 |
47
|
sneqd |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
46 49
|
anbi12d |
|
| 51 |
45 50
|
syl5ibrcom |
|
| 52 |
43 51
|
biimtrid |
|
| 53 |
|
rneq |
|
| 54 |
53
|
unieqd |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
anbi2d |
|
| 58 |
55 57
|
imbi12d |
|
| 59 |
52 58
|
syl5ibrcom |
|
| 60 |
59
|
rexlimiv |
|
| 61 |
60
|
imp |
|
| 62 |
40 61
|
impbii |
|
| 63 |
24 62
|
bitri |
|
| 64 |
13 19 63
|
vtoclbg |
|
| 65 |
1 5 9 64
|
f1od |
|