Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ixpsnf1o.f | |
|
Assertion | ixpsnf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | |
|
2 | snex | |
|
3 | snex | |
|
4 | 2 3 | xpex | |
5 | 4 | a1i | |
6 | vex | |
|
7 | 6 | rnex | |
8 | 7 | uniex | |
9 | 8 | a1i | |
10 | sneq | |
|
11 | 10 | xpeq1d | |
12 | 11 | eqeq2d | |
13 | 12 | anbi2d | |
14 | elixpsn | |
|
15 | 14 | elv | |
16 | 10 | ixpeq1d | |
17 | 16 | eleq2d | |
18 | 15 17 | bitr3id | |
19 | 18 | anbi1d | |
20 | vex | |
|
21 | vex | |
|
22 | 20 21 | xpsn | |
23 | 22 | eqeq2i | |
24 | 23 | anbi2i | |
25 | eqid | |
|
26 | opeq2 | |
|
27 | 26 | sneqd | |
28 | 27 | rspceeqv | |
29 | 25 28 | mpan2 | |
30 | 20 21 | op2nda | |
31 | 30 | eqcomi | |
32 | 29 31 | jctir | |
33 | eqeq1 | |
|
34 | 33 | rexbidv | |
35 | rneq | |
|
36 | 35 | unieqd | |
37 | 36 | eqeq2d | |
38 | 34 37 | anbi12d | |
39 | 32 38 | syl5ibrcom | |
40 | 39 | imp | |
41 | vex | |
|
42 | 20 41 | op2nda | |
43 | 42 | eqeq2i | |
44 | eqidd | |
|
45 | 44 | ancli | |
46 | eleq1w | |
|
47 | opeq2 | |
|
48 | 47 | sneqd | |
49 | 48 | eqeq2d | |
50 | 46 49 | anbi12d | |
51 | 45 50 | syl5ibrcom | |
52 | 43 51 | biimtrid | |
53 | rneq | |
|
54 | 53 | unieqd | |
55 | 54 | eqeq2d | |
56 | eqeq1 | |
|
57 | 56 | anbi2d | |
58 | 55 57 | imbi12d | |
59 | 52 58 | syl5ibrcom | |
60 | 59 | rexlimiv | |
61 | 60 | imp | |
62 | 40 61 | impbii | |
63 | 24 62 | bitri | |
64 | 13 19 63 | vtoclbg | |
65 | 1 5 9 64 | f1od | |