Metamath Proof Explorer


Theorem ixpsnf1o

Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis ixpsnf1o.f F = x A I × x
Assertion ixpsnf1o I V F : A 1-1 onto y I A

Proof

Step Hyp Ref Expression
1 ixpsnf1o.f F = x A I × x
2 snex I V
3 snex x V
4 2 3 xpex I × x V
5 4 a1i I V x A I × x V
6 vex a V
7 6 rnex ran a V
8 7 uniex ran a V
9 8 a1i I V a y I A ran a V
10 sneq b = I b = I
11 10 xpeq1d b = I b × x = I × x
12 11 eqeq2d b = I a = b × x a = I × x
13 12 anbi2d b = I x A a = b × x x A a = I × x
14 elixpsn b V a y b A c A a = b c
15 14 elv a y b A c A a = b c
16 10 ixpeq1d b = I y b A = y I A
17 16 eleq2d b = I a y b A a y I A
18 15 17 bitr3id b = I c A a = b c a y I A
19 18 anbi1d b = I c A a = b c x = ran a a y I A x = ran a
20 vex b V
21 vex x V
22 20 21 xpsn b × x = b x
23 22 eqeq2i a = b × x a = b x
24 23 anbi2i x A a = b × x x A a = b x
25 eqid b x = b x
26 opeq2 c = x b c = b x
27 26 sneqd c = x b c = b x
28 27 rspceeqv x A b x = b x c A b x = b c
29 25 28 mpan2 x A c A b x = b c
30 20 21 op2nda ran b x = x
31 30 eqcomi x = ran b x
32 29 31 jctir x A c A b x = b c x = ran b x
33 eqeq1 a = b x a = b c b x = b c
34 33 rexbidv a = b x c A a = b c c A b x = b c
35 rneq a = b x ran a = ran b x
36 35 unieqd a = b x ran a = ran b x
37 36 eqeq2d a = b x x = ran a x = ran b x
38 34 37 anbi12d a = b x c A a = b c x = ran a c A b x = b c x = ran b x
39 32 38 syl5ibrcom x A a = b x c A a = b c x = ran a
40 39 imp x A a = b x c A a = b c x = ran a
41 vex c V
42 20 41 op2nda ran b c = c
43 42 eqeq2i x = ran b c x = c
44 eqidd c A b c = b c
45 44 ancli c A c A b c = b c
46 eleq1w x = c x A c A
47 opeq2 x = c b x = b c
48 47 sneqd x = c b x = b c
49 48 eqeq2d x = c b c = b x b c = b c
50 46 49 anbi12d x = c x A b c = b x c A b c = b c
51 45 50 syl5ibrcom c A x = c x A b c = b x
52 43 51 syl5bi c A x = ran b c x A b c = b x
53 rneq a = b c ran a = ran b c
54 53 unieqd a = b c ran a = ran b c
55 54 eqeq2d a = b c x = ran a x = ran b c
56 eqeq1 a = b c a = b x b c = b x
57 56 anbi2d a = b c x A a = b x x A b c = b x
58 55 57 imbi12d a = b c x = ran a x A a = b x x = ran b c x A b c = b x
59 52 58 syl5ibrcom c A a = b c x = ran a x A a = b x
60 59 rexlimiv c A a = b c x = ran a x A a = b x
61 60 imp c A a = b c x = ran a x A a = b x
62 40 61 impbii x A a = b x c A a = b c x = ran a
63 24 62 bitri x A a = b × x c A a = b c x = ran a
64 13 19 63 vtoclbg I V x A a = I × x a y I A x = ran a
65 1 5 9 64 f1od I V F : A 1-1 onto y I A