Metamath Proof Explorer


Theorem elixpsn

Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion elixpsn AVFxAByBF=Ay

Proof

Step Hyp Ref Expression
1 sneq z=Az=A
2 1 ixpeq1d z=AxzB=xAB
3 2 eleq2d z=AFxzBFxAB
4 opeq1 z=Azy=Ay
5 4 sneqd z=Azy=Ay
6 5 eqeq2d z=AF=zyF=Ay
7 6 rexbidv z=AyBF=zyyBF=Ay
8 elex FxzBFV
9 snex zyV
10 eleq1 F=zyFVzyV
11 9 10 mpbiri F=zyFV
12 11 rexlimivw yBF=zyFV
13 eleq1 w=FwxzBFxzB
14 eqeq1 w=Fw=zyF=zy
15 14 rexbidv w=FyBw=zyyBF=zy
16 vex wV
17 16 elixp wxzBwFnzxzwxB
18 vex zV
19 fveq2 x=zwx=wz
20 19 eleq1d x=zwxBwzB
21 18 20 ralsn xzwxBwzB
22 21 anbi2i wFnzxzwxBwFnzwzB
23 simpl wFnzwzBwFnz
24 fveq2 y=zwy=wz
25 24 eleq1d y=zwyBwzB
26 18 25 ralsn yzwyBwzB
27 26 biimpri wzByzwyB
28 27 adantl wFnzwzByzwyB
29 ffnfv w:zBwFnzyzwyB
30 23 28 29 sylanbrc wFnzwzBw:zB
31 18 fsn2 w:zBwzBw=zwz
32 30 31 sylib wFnzwzBwzBw=zwz
33 opeq2 y=wzzy=zwz
34 33 sneqd y=wzzy=zwz
35 34 rspceeqv wzBw=zwzyBw=zy
36 32 35 syl wFnzwzByBw=zy
37 vex yV
38 18 37 fvsn zyz=y
39 id yByB
40 38 39 eqeltrid yBzyzB
41 18 37 fnsn zyFnz
42 40 41 jctil yBzyFnzzyzB
43 fneq1 w=zywFnzzyFnz
44 fveq1 w=zywz=zyz
45 44 eleq1d w=zywzBzyzB
46 43 45 anbi12d w=zywFnzwzBzyFnzzyzB
47 42 46 syl5ibrcom yBw=zywFnzwzB
48 47 rexlimiv yBw=zywFnzwzB
49 36 48 impbii wFnzwzByBw=zy
50 17 22 49 3bitri wxzByBw=zy
51 13 15 50 vtoclbg FVFxzByBF=zy
52 8 12 51 pm5.21nii FxzByBF=zy
53 3 7 52 vtoclbg AVFxAByBF=Ay