Metamath Proof Explorer


Theorem mapsnop

Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypothesis mapsnop.f F=XY
Assertion mapsnop XVYRRWFRX

Proof

Step Hyp Ref Expression
1 mapsnop.f F=XY
2 fsng XVYRF:XYF=XY
3 2 3adant3 XVYRRWF:XYF=XY
4 1 3 mpbiri XVYRRWF:XY
5 snssi YRYR
6 5 3ad2ant2 XVYRRWYR
7 4 6 fssd XVYRRWF:XR
8 simp3 XVYRRWRW
9 snex XV
10 elmapg RWXVFRXF:XR
11 8 9 10 sylancl XVYRRWFRXF:XR
12 7 11 mpbird XVYRRWFRX