Metamath Proof Explorer


Theorem mapsnop

Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypothesis mapsnop.f F = X Y
Assertion mapsnop X V Y R R W F R X

Proof

Step Hyp Ref Expression
1 mapsnop.f F = X Y
2 fsng X V Y R F : X Y F = X Y
3 2 3adant3 X V Y R R W F : X Y F = X Y
4 1 3 mpbiri X V Y R R W F : X Y
5 snssi Y R Y R
6 5 3ad2ant2 X V Y R R W Y R
7 4 6 fssd X V Y R R W F : X R
8 simp3 X V Y R R W R W
9 snex X V
10 elmapg R W X V F R X F : X R
11 8 9 10 sylancl X V Y R R W F R X F : X R
12 7 11 mpbird X V Y R R W F R X