Metamath Proof Explorer


Theorem marepveval

Description: An entry of a matrix with a replaced column. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvfval.a A=NMatR
marepvfval.b B=BaseA
marepvfval.q Q=NmatRepVR
marepvfval.v V=BaseRN
Assertion marepveval MBCVKNINJNIMQCKJ=ifJ=KCIIMJ

Proof

Step Hyp Ref Expression
1 marepvfval.a A=NMatR
2 marepvfval.b B=BaseA
3 marepvfval.q Q=NmatRepVR
4 marepvfval.v V=BaseRN
5 1 2 3 4 marepvval MBCVKNMQCK=iN,jNifj=KCiiMj
6 5 adantr MBCVKNINJNMQCK=iN,jNifj=KCiiMj
7 simprl MBCVKNINJNIN
8 simplrr MBCVKNINJNi=IJN
9 fvexd MBCVKNINJNCiV
10 ovexd MBCVKNINJNiMjV
11 9 10 ifcld MBCVKNINJNifj=KCiiMjV
12 11 adantr MBCVKNINJNi=Ij=Jifj=KCiiMjV
13 eqeq1 j=Jj=KJ=K
14 13 adantl i=Ij=Jj=KJ=K
15 fveq2 i=ICi=CI
16 15 adantr i=Ij=JCi=CI
17 oveq12 i=Ij=JiMj=IMJ
18 14 16 17 ifbieq12d i=Ij=Jifj=KCiiMj=ifJ=KCIIMJ
19 18 adantl MBCVKNINJNi=Ij=Jifj=KCiiMj=ifJ=KCIIMJ
20 7 8 12 19 ovmpodv2 MBCVKNINJNMQCK=iN,jNifj=KCiiMjIMQCKJ=ifJ=KCIIMJ
21 6 20 mpd MBCVKNINJNIMQCKJ=ifJ=KCIIMJ