Description: (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marypha1.a | |
|
marypha1.b | |
||
marypha1.c | |
||
marypha1.d | |
||
Assertion | marypha1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marypha1.a | |
|
2 | marypha1.b | |
|
3 | marypha1.c | |
|
4 | marypha1.d | |
|
5 | elpwi | |
|
6 | 5 4 | sylan2 | |
7 | 6 | ralrimiva | |
8 | imaeq1 | |
|
9 | 8 | breq2d | |
10 | 9 | ralbidv | |
11 | pweq | |
|
12 | 11 | rexeqdv | |
13 | 10 12 | imbi12d | |
14 | xpeq2 | |
|
15 | 14 | pweqd | |
16 | 15 | raleqdv | |
17 | 16 | imbi2d | |
18 | marypha1lem | |
|
19 | 18 | com12 | |
20 | 17 19 | vtoclga | |
21 | 2 1 20 | sylc | |
22 | 1 2 | xpexd | |
23 | 22 3 | sselpwd | |
24 | 13 21 23 | rspcdva | |
25 | 7 24 | mpd | |
26 | elpwi | |
|
27 | 26 3 | sylan9ssr | |
28 | rnss | |
|
29 | 27 28 | syl | |
30 | rnxpss | |
|
31 | 29 30 | sstrdi | |
32 | f1ssr | |
|
33 | 32 | expcom | |
34 | 31 33 | syl | |
35 | 34 | reximdva | |
36 | 25 35 | mpd | |