Metamath Proof Explorer


Theorem mat0dimid

Description: The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A=MatR
Assertion mat0dimid RRing1A=

Proof

Step Hyp Ref Expression
1 mat0dim.a A=MatR
2 0fin Fin
3 1 matring FinRRingARing
4 2 3 mpan RRingARing
5 eqid BaseA=BaseA
6 eqid 1A=1A
7 5 6 ringidcl ARing1ABaseA
8 4 7 syl RRing1ABaseA
9 1 fveq2i BaseA=BaseMatR
10 mat0dimbas0 RRingBaseMatR=
11 9 10 eqtrid RRingBaseA=
12 11 eleq2d RRing1ABaseA1A
13 elsni 1A1A=
14 12 13 syl6bi RRing1ABaseA1A=
15 8 14 mpd RRing1A=