Metamath Proof Explorer


Theorem mat1comp

Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b B=BaseR
mamumat1cl.r φRRing
mamumat1cl.o 1˙=1R
mamumat1cl.z 0˙=0R
mamumat1cl.i I=iM,jMifi=j1˙0˙
mamumat1cl.m φMFin
Assertion mat1comp AMJMAIJ=ifA=J1˙0˙

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B=BaseR
2 mamumat1cl.r φRRing
3 mamumat1cl.o 1˙=1R
4 mamumat1cl.z 0˙=0R
5 mamumat1cl.i I=iM,jMifi=j1˙0˙
6 mamumat1cl.m φMFin
7 eqeq1 i=Ai=jA=j
8 7 ifbid i=Aifi=j1˙0˙=ifA=j1˙0˙
9 eqeq2 j=JA=jA=J
10 9 ifbid j=JifA=j1˙0˙=ifA=J1˙0˙
11 3 fvexi 1˙V
12 4 fvexi 0˙V
13 11 12 ifex ifA=J1˙0˙V
14 8 10 5 13 ovmpo AMJMAIJ=ifA=J1˙0˙