Metamath Proof Explorer


Theorem matbas2

Description: The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 16-Dec-2018)

Ref Expression
Hypotheses matbas2.a A=NMatR
matbas2.k K=BaseR
Assertion matbas2 NFinRVKN×N=BaseA

Proof

Step Hyp Ref Expression
1 matbas2.a A=NMatR
2 matbas2.k K=BaseR
3 xpfi NFinNFinN×NFin
4 3 anidms NFinN×NFin
5 4 anim1ci NFinRVRVN×NFin
6 eqid RfreeLModN×N=RfreeLModN×N
7 6 2 frlmfibas RVN×NFinKN×N=BaseRfreeLModN×N
8 5 7 syl NFinRVKN×N=BaseRfreeLModN×N
9 1 6 matbas NFinRVBaseRfreeLModN×N=BaseA
10 8 9 eqtrd NFinRVKN×N=BaseA