Metamath Proof Explorer


Theorem matvscaOLD

Description: Obsolete proof of matvsca as of 12-Nov-2024. The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses matbas.a A=NMatR
matbas.g G=RfreeLModN×N
Assertion matvscaOLD NFinRVG=A

Proof

Step Hyp Ref Expression
1 matbas.a A=NMatR
2 matbas.g G=RfreeLModN×N
3 vscaid 𝑠=Slotndx
4 vscandx ndx=6
5 3re 3
6 3lt6 3<6
7 5 6 gtneii 63
8 mulrndx ndx=3
9 7 8 neeqtrri 6ndx
10 4 9 eqnetri ndxndx
11 3 10 setsnid G=GsSetndxRmaMulNNN
12 eqid RmaMulNNN=RmaMulNNN
13 1 2 12 matval NFinRVA=GsSetndxRmaMulNNN
14 13 fveq2d NFinRVA=GsSetndxRmaMulNNN
15 11 14 eqtr4id NFinRVG=A