Metamath Proof Explorer


Theorem mavmumamul1

Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses mavmumamul1.a A=NMatR
mavmumamul1.m ×˙=RmaMulNN
mavmumamul1.t ·˙=RmaVecMulNN
mavmumamul1.b B=BaseR
mavmumamul1.r φRRing
mavmumamul1.n φNFin
mavmumamul1.x φXBaseA
mavmumamul1.y φYBN
mavmumamul1.z φZBN×
Assertion mavmumamul1 φjNYj=jZiNX·˙Yi=iX×˙Z

Proof

Step Hyp Ref Expression
1 mavmumamul1.a A=NMatR
2 mavmumamul1.m ×˙=RmaMulNN
3 mavmumamul1.t ·˙=RmaVecMulNN
4 mavmumamul1.b B=BaseR
5 mavmumamul1.r φRRing
6 mavmumamul1.n φNFin
7 mavmumamul1.x φXBaseA
8 mavmumamul1.y φYBN
9 mavmumamul1.z φZBN×
10 1 4 matbas2 NFinRRingBN×N=BaseA
11 6 5 10 syl2anc φBN×N=BaseA
12 7 11 eleqtrrd φXBN×N
13 2 3 4 5 6 6 12 8 9 mvmumamul1 φjNYj=jZiNX·˙Yi=iX×˙Z