Metamath Proof Explorer


Theorem mdet0fv0

Description: The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019)

Ref Expression
Assertion mdet0fv0 RRingmaDetR=1R

Proof

Step Hyp Ref Expression
1 mdet0pr RRingmaDetR=1R
2 1 fveq1d RRingmaDetR=1R
3 0ex V
4 fvex 1RV
5 3 4 fvsn 1R=1R
6 2 5 eqtrdi RRingmaDetR=1R