Description: The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0fv0 | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r ‘ 𝑅 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mdet0pr | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ‘ ∅ ) ) | 
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 5 | 3 4 | fvsn | ⊢ ( { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ‘ ∅ ) = ( 1r ‘ 𝑅 ) | 
| 6 | 2 5 | eqtrdi | ⊢ ( 𝑅 ∈ Ring → ( ( ∅ maDet 𝑅 ) ‘ ∅ ) = ( 1r ‘ 𝑅 ) ) |