Description: The determinant of the empty matrix on a given ring is the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0fv0 | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mdet0pr |  |-  ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) | |
| 2 | 1 | fveq1d |  |-  ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( { <. (/) , ( 1r ` R ) >. } ` (/) ) ) | 
| 3 | 0ex | |- (/) e. _V | |
| 4 | fvex | |- ( 1r ` R ) e. _V | |
| 5 | 3 4 | fvsn |  |-  ( { <. (/) , ( 1r ` R ) >. } ` (/) ) = ( 1r ` R ) | 
| 6 | 2 5 | eqtrdi | |- ( R e. Ring -> ( ( (/) maDet R ) ` (/) ) = ( 1r ` R ) ) |