Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( (/) maDet R ) = ( (/) maDet R ) |
2 |
|
eqid |
|- ( (/) Mat R ) = ( (/) Mat R ) |
3 |
|
eqid |
|- ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) |
4 |
|
eqid |
|- ( Base ` ( SymGrp ` (/) ) ) = ( Base ` ( SymGrp ` (/) ) ) |
5 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
6 |
|
eqid |
|- ( pmSgn ` (/) ) = ( pmSgn ` (/) ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
9 |
1 2 3 4 5 6 7 8
|
mdetfval |
|- ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
10 |
9
|
a1i |
|- ( R e. Ring -> ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
11 |
|
mat0dimbas0 |
|- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
12 |
11
|
mpteq1d |
|- ( R e. Ring -> ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
a1i |
|- ( R e. Ring -> (/) e. _V ) |
15 |
|
ovex |
|- ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V |
16 |
|
oveq |
|- ( m = (/) -> ( ( p ` x ) m x ) = ( ( p ` x ) (/) x ) ) |
17 |
16
|
mpteq2dv |
|- ( m = (/) -> ( x e. (/) |-> ( ( p ` x ) m x ) ) = ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) |
18 |
17
|
oveq2d |
|- ( m = (/) -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) |
19 |
18
|
oveq2d |
|- ( m = (/) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) |
20 |
19
|
mpteq2dv |
|- ( m = (/) -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) |
21 |
20
|
oveq2d |
|- ( m = (/) -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) ) |
22 |
21
|
fmptsng |
|- ( ( (/) e. _V /\ ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V ) -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
23 |
14 15 22
|
sylancl |
|- ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
24 |
|
mpt0 |
|- ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) |
25 |
24
|
a1i |
|- ( R e. Ring -> ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) ) |
26 |
25
|
oveq2d |
|- ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( ( mulGrp ` R ) gsum (/) ) ) |
27 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
28 |
27
|
gsum0 |
|- ( ( mulGrp ` R ) gsum (/) ) = ( 0g ` ( mulGrp ` R ) ) |
29 |
26 28
|
eqtrdi |
|- ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( 0g ` ( mulGrp ` R ) ) ) |
30 |
29
|
oveq2d |
|- ( R e. Ring -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) |
31 |
30
|
mpteq2dv |
|- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) |
32 |
31
|
oveq2d |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) ) |
33 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
34 |
8 33
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
35 |
34
|
eqcomi |
|- ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) |
36 |
35
|
a1i |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) |
37 |
36
|
oveq2d |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) ) |
38 |
|
0fin |
|- (/) e. Fin |
39 |
4 6 5
|
zrhcopsgnelbas |
|- ( ( R e. Ring /\ (/) e. Fin /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) |
40 |
38 39
|
mp3an2 |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) |
41 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
42 |
41 7 33
|
ringridm |
|- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
43 |
40 42
|
syldan |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
44 |
37 43
|
eqtrd |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
45 |
44
|
mpteq2dva |
|- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) |
46 |
45
|
oveq2d |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) ) |
47 |
|
simpl |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> R e. Ring ) |
48 |
38
|
a1i |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> (/) e. Fin ) |
49 |
|
simpr |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( Base ` ( SymGrp ` (/) ) ) ) |
50 |
|
elsni |
|- ( p e. { (/) } -> p = (/) ) |
51 |
|
fveq2 |
|- ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = ( ( pmSgn ` (/) ) ` (/) ) ) |
52 |
|
psgn0fv0 |
|- ( ( pmSgn ` (/) ) ` (/) ) = 1 |
53 |
51 52
|
eqtrdi |
|- ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
54 |
50 53
|
syl |
|- ( p e. { (/) } -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
55 |
|
symgbas0 |
|- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |
56 |
54 55
|
eleq2s |
|- ( p e. ( Base ` ( SymGrp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
57 |
56
|
adantl |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
58 |
|
eqid |
|- ( SymGrp ` (/) ) = ( SymGrp ` (/) ) |
59 |
58 4 6
|
psgnevpmb |
|- ( (/) e. Fin -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) |
60 |
48 59
|
syl |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) |
61 |
49 57 60
|
mpbir2and |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( pmEven ` (/) ) ) |
62 |
5 6 33
|
zrhpsgnevpm |
|- ( ( R e. Ring /\ (/) e. Fin /\ p e. ( pmEven ` (/) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) |
63 |
47 48 61 62
|
syl3anc |
|- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) |
64 |
63
|
mpteq2dva |
|- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) |
65 |
64
|
oveq2d |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) ) |
66 |
55
|
a1i |
|- ( R e. Ring -> ( Base ` ( SymGrp ` (/) ) ) = { (/) } ) |
67 |
66
|
mpteq1d |
|- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) = ( p e. { (/) } |-> ( 1r ` R ) ) ) |
68 |
67
|
oveq2d |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) = ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) ) |
69 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
70 |
41 33
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
71 |
|
eqidd |
|- ( p = (/) -> ( 1r ` R ) = ( 1r ` R ) ) |
72 |
41 71
|
gsumsn |
|- ( ( R e. Mnd /\ (/) e. _V /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) |
73 |
69 14 70 72
|
syl3anc |
|- ( R e. Ring -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) |
74 |
65 68 73
|
3eqtrd |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( 1r ` R ) ) |
75 |
32 46 74
|
3eqtrd |
|- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( 1r ` R ) ) |
76 |
75
|
opeq2d |
|- ( R e. Ring -> <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. = <. (/) , ( 1r ` R ) >. ) |
77 |
76
|
sneqd |
|- ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = { <. (/) , ( 1r ` R ) >. } ) |
78 |
23 77
|
eqtr3d |
|- ( R e. Ring -> ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = { <. (/) , ( 1r ` R ) >. } ) |
79 |
10 12 78
|
3eqtrd |
|- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |