| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( (/) maDet R ) = ( (/) maDet R ) | 
						
							| 2 |  | eqid |  |-  ( (/) Mat R ) = ( (/) Mat R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( SymGrp ` (/) ) ) = ( Base ` ( SymGrp ` (/) ) ) | 
						
							| 5 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 6 |  | eqid |  |-  ( pmSgn ` (/) ) = ( pmSgn ` (/) ) | 
						
							| 7 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 8 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | mdetfval |  |-  ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) | 
						
							| 10 | 9 | a1i |  |-  ( R e. Ring -> ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) | 
						
							| 11 |  | mat0dimbas0 |  |-  ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) | 
						
							| 12 | 11 | mpteq1d |  |-  ( R e. Ring -> ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) | 
						
							| 13 |  | 0ex |  |-  (/) e. _V | 
						
							| 14 | 13 | a1i |  |-  ( R e. Ring -> (/) e. _V ) | 
						
							| 15 |  | ovex |  |-  ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V | 
						
							| 16 |  | oveq |  |-  ( m = (/) -> ( ( p ` x ) m x ) = ( ( p ` x ) (/) x ) ) | 
						
							| 17 | 16 | mpteq2dv |  |-  ( m = (/) -> ( x e. (/) |-> ( ( p ` x ) m x ) ) = ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( m = (/) -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( m = (/) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) | 
						
							| 20 | 19 | mpteq2dv |  |-  ( m = (/) -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( m = (/) -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) ) | 
						
							| 22 | 21 | fmptsng |  |-  ( ( (/) e. _V /\ ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V ) -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) | 
						
							| 23 | 14 15 22 | sylancl |  |-  ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) | 
						
							| 24 |  | mpt0 |  |-  ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) | 
						
							| 25 | 24 | a1i |  |-  ( R e. Ring -> ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( ( mulGrp ` R ) gsum (/) ) ) | 
						
							| 27 |  | eqid |  |-  ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 28 | 27 | gsum0 |  |-  ( ( mulGrp ` R ) gsum (/) ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 29 | 26 28 | eqtrdi |  |-  ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( 0g ` ( mulGrp ` R ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( R e. Ring -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) | 
						
							| 31 | 30 | mpteq2dv |  |-  ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) ) | 
						
							| 33 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 34 | 8 33 | ringidval |  |-  ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 35 | 34 | eqcomi |  |-  ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) | 
						
							| 36 | 35 | a1i |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 38 |  | 0fi |  |-  (/) e. Fin | 
						
							| 39 | 4 6 5 | zrhcopsgnelbas |  |-  ( ( R e. Ring /\ (/) e. Fin /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) | 
						
							| 40 | 38 39 | mp3an2 |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) | 
						
							| 41 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 42 | 41 7 33 | ringridm |  |-  ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) | 
						
							| 43 | 40 42 | syldan |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) | 
						
							| 44 | 37 43 | eqtrd |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) | 
						
							| 45 | 44 | mpteq2dva |  |-  ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) ) | 
						
							| 47 |  | simpl |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> R e. Ring ) | 
						
							| 48 | 38 | a1i |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> (/) e. Fin ) | 
						
							| 49 |  | simpr |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( Base ` ( SymGrp ` (/) ) ) ) | 
						
							| 50 |  | elsni |  |-  ( p e. { (/) } -> p = (/) ) | 
						
							| 51 |  | fveq2 |  |-  ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = ( ( pmSgn ` (/) ) ` (/) ) ) | 
						
							| 52 |  | psgn0fv0 |  |-  ( ( pmSgn ` (/) ) ` (/) ) = 1 | 
						
							| 53 | 51 52 | eqtrdi |  |-  ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) | 
						
							| 54 | 50 53 | syl |  |-  ( p e. { (/) } -> ( ( pmSgn ` (/) ) ` p ) = 1 ) | 
						
							| 55 |  | symgbas0 |  |-  ( Base ` ( SymGrp ` (/) ) ) = { (/) } | 
						
							| 56 | 54 55 | eleq2s |  |-  ( p e. ( Base ` ( SymGrp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) | 
						
							| 57 | 56 | adantl |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) | 
						
							| 58 |  | eqid |  |-  ( SymGrp ` (/) ) = ( SymGrp ` (/) ) | 
						
							| 59 | 58 4 6 | psgnevpmb |  |-  ( (/) e. Fin -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) | 
						
							| 60 | 48 59 | syl |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) | 
						
							| 61 | 49 57 60 | mpbir2and |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( pmEven ` (/) ) ) | 
						
							| 62 | 5 6 33 | zrhpsgnevpm |  |-  ( ( R e. Ring /\ (/) e. Fin /\ p e. ( pmEven ` (/) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) | 
						
							| 63 | 47 48 61 62 | syl3anc |  |-  ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) | 
						
							| 64 | 63 | mpteq2dva |  |-  ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) ) | 
						
							| 66 | 55 | a1i |  |-  ( R e. Ring -> ( Base ` ( SymGrp ` (/) ) ) = { (/) } ) | 
						
							| 67 | 66 | mpteq1d |  |-  ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) = ( p e. { (/) } |-> ( 1r ` R ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) = ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) ) | 
						
							| 69 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 70 | 41 33 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 71 |  | eqidd |  |-  ( p = (/) -> ( 1r ` R ) = ( 1r ` R ) ) | 
						
							| 72 | 41 71 | gsumsn |  |-  ( ( R e. Mnd /\ (/) e. _V /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) | 
						
							| 73 | 69 14 70 72 | syl3anc |  |-  ( R e. Ring -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) | 
						
							| 74 | 65 68 73 | 3eqtrd |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( 1r ` R ) ) | 
						
							| 75 | 32 46 74 | 3eqtrd |  |-  ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( 1r ` R ) ) | 
						
							| 76 | 75 | opeq2d |  |-  ( R e. Ring -> <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. = <. (/) , ( 1r ` R ) >. ) | 
						
							| 77 | 76 | sneqd |  |-  ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = { <. (/) , ( 1r ` R ) >. } ) | 
						
							| 78 | 23 77 | eqtr3d |  |-  ( R e. Ring -> ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = { <. (/) , ( 1r ` R ) >. } ) | 
						
							| 79 | 10 12 78 | 3eqtrd |  |-  ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |