Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ∅ maDet 𝑅 ) = ( ∅ maDet 𝑅 ) |
2 |
|
eqid |
⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = ( Base ‘ ( SymGrp ‘ ∅ ) ) |
5 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( pmSgn ‘ ∅ ) = ( pmSgn ‘ ∅ ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
9 |
1 2 3 4 5 6 7 8
|
mdetfval |
⊢ ( ∅ maDet 𝑅 ) = ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
10 |
9
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
11 |
|
mat0dimbas0 |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
12 |
11
|
mpteq1d |
⊢ ( 𝑅 ∈ Ring → ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝑅 ∈ Ring → ∅ ∈ V ) |
15 |
|
ovex |
⊢ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ∈ V |
16 |
|
oveq |
⊢ ( 𝑚 = ∅ → ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) = ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑚 = ∅ → ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑚 = ∅ → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑚 = ∅ → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑚 = ∅ → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑚 = ∅ → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ) |
22 |
21
|
fmptsng |
⊢ ( ( ∅ ∈ V ∧ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ∈ V ) → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
23 |
14 15 22
|
sylancl |
⊢ ( 𝑅 ∈ Ring → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
24 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) = ∅ |
25 |
24
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) = ∅ ) |
26 |
25
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ∅ ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
28 |
27
|
gsum0 |
⊢ ( ( mulGrp ‘ 𝑅 ) Σg ∅ ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
29 |
26 28
|
eqtrdi |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) |
31 |
30
|
mpteq2dv |
⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) ) |
33 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
34 |
8 33
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
35 |
34
|
eqcomi |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) |
36 |
35
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
38 |
|
0fin |
⊢ ∅ ∈ Fin |
39 |
4 6 5
|
zrhcopsgnelbas |
⊢ ( ( 𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) |
40 |
38 39
|
mp3an2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
42 |
41 7 33
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
43 |
40 42
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
44 |
37 43
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
45 |
44
|
mpteq2dva |
⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) ) |
47 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑅 ∈ Ring ) |
48 |
38
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ∅ ∈ Fin ) |
49 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) |
50 |
|
elsni |
⊢ ( 𝑝 ∈ { ∅ } → 𝑝 = ∅ ) |
51 |
|
fveq2 |
⊢ ( 𝑝 = ∅ → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = ( ( pmSgn ‘ ∅ ) ‘ ∅ ) ) |
52 |
|
psgn0fv0 |
⊢ ( ( pmSgn ‘ ∅ ) ‘ ∅ ) = 1 |
53 |
51 52
|
eqtrdi |
⊢ ( 𝑝 = ∅ → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
54 |
50 53
|
syl |
⊢ ( 𝑝 ∈ { ∅ } → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
55 |
|
symgbas0 |
⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } |
56 |
54 55
|
eleq2s |
⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
57 |
56
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
58 |
|
eqid |
⊢ ( SymGrp ‘ ∅ ) = ( SymGrp ‘ ∅ ) |
59 |
58 4 6
|
psgnevpmb |
⊢ ( ∅ ∈ Fin → ( 𝑝 ∈ ( pmEven ‘ ∅ ) ↔ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ∧ ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) ) ) |
60 |
48 59
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( 𝑝 ∈ ( pmEven ‘ ∅ ) ↔ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ∧ ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) ) ) |
61 |
49 57 60
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑝 ∈ ( pmEven ‘ ∅ ) ) |
62 |
5 6 33
|
zrhpsgnevpm |
⊢ ( ( 𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ ( pmEven ‘ ∅ ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) = ( 1r ‘ 𝑅 ) ) |
63 |
47 48 61 62
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) = ( 1r ‘ 𝑅 ) ) |
64 |
63
|
mpteq2dva |
⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) ) |
66 |
55
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } ) |
67 |
66
|
mpteq1d |
⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) = ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) ) |
69 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
70 |
41 33
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
71 |
|
eqidd |
⊢ ( 𝑝 = ∅ → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) |
72 |
41 71
|
gsumsn |
⊢ ( ( 𝑅 ∈ Mnd ∧ ∅ ∈ V ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
73 |
69 14 70 72
|
syl3anc |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
74 |
65 68 73
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) = ( 1r ‘ 𝑅 ) ) |
75 |
32 46 74
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) = ( 1r ‘ 𝑅 ) ) |
76 |
75
|
opeq2d |
⊢ ( 𝑅 ∈ Ring → 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 = 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 ) |
77 |
76
|
sneqd |
⊢ ( 𝑅 ∈ Ring → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |
78 |
23 77
|
eqtr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |
79 |
10 12 78
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |