Metamath Proof Explorer


Theorem meaiunle

Description: The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meaiunle.nph nφ
meaiunle.m φMMeas
meaiunle.s S=domM
meaiunle.z Z=N
meaiunle.e φE:ZS
Assertion meaiunle φMnZEnsum^nZMEn

Proof

Step Hyp Ref Expression
1 meaiunle.nph nφ
2 meaiunle.m φMMeas
3 meaiunle.s S=domM
4 meaiunle.z Z=N
5 meaiunle.e φE:ZS
6 eqid nZEnxN..^nEx=nZEnxN..^nEx
7 1 2 3 4 5 6 meaiunlelem φMnZEnsum^nZMEn