Metamath Proof Explorer


Theorem mgpplusg

Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014)

Ref Expression
Hypotheses mgpval.1 M=mulGrpR
mgpval.2 ·˙=R
Assertion mgpplusg ·˙=+M

Proof

Step Hyp Ref Expression
1 mgpval.1 M=mulGrpR
2 mgpval.2 ·˙=R
3 2 fvexi ·˙V
4 plusgid +𝑔=Slot+ndx
5 4 setsid RV·˙V·˙=+RsSet+ndx·˙
6 3 5 mpan2 RV·˙=+RsSet+ndx·˙
7 1 2 mgpval M=RsSet+ndx·˙
8 7 fveq2i +M=+RsSet+ndx·˙
9 6 8 eqtr4di RV·˙=+M
10 4 str0 =+
11 fvprc ¬RVR=
12 2 11 eqtrid ¬RV·˙=
13 fvprc ¬RVmulGrpR=
14 1 13 eqtrid ¬RVM=
15 14 fveq2d ¬RV+M=+
16 10 12 15 3eqtr4a ¬RV·˙=+M
17 9 16 pm2.61i ·˙=+M