Metamath Proof Explorer


Theorem mirmir2

Description: Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
miriso.1 φ X P
miriso.2 φ Y P
Assertion mirmir2 φ M S Y X = S M Y M X

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 miriso.1 φ X P
10 miriso.2 φ Y P
11 1 2 3 4 5 6 7 8 10 mircl φ M Y P
12 eqid S M Y = S M Y
13 1 2 3 4 5 6 7 8 9 mircl φ M X P
14 eqid S Y = S Y
15 1 2 3 4 5 6 10 14 9 mircl φ S Y X P
16 1 2 3 4 5 6 7 8 15 mircl φ M S Y X P
17 1 2 3 4 5 6 10 14 9 mircgr φ Y - ˙ S Y X = Y - ˙ X
18 1 2 3 4 5 6 7 8 10 15 10 9 17 mircgrs φ M Y - ˙ M S Y X = M Y - ˙ M X
19 1 2 3 4 5 6 10 14 9 mirbtwn φ Y S Y X I X
20 1 2 3 4 5 6 7 8 15 10 9 19 mirbtwni φ M Y M S Y X I M X
21 1 2 3 4 5 6 11 12 13 16 18 20 ismir φ M S Y X = S M Y M X