Metamath Proof Explorer


Theorem mirne

Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirinv.b φBP
mirne.1 φBA
Assertion mirne φMBA

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirinv.b φBP
10 mirne.1 φBA
11 simpr φMB=AMB=A
12 11 fveq2d φMB=AMMB=MA
13 1 2 3 4 5 6 7 8 9 mirmir φMMB=B
14 13 adantr φMB=AMMB=B
15 eqid A=A
16 1 2 3 4 5 6 7 8 7 mirinv φMA=AA=A
17 15 16 mpbiri φMA=A
18 17 adantr φMB=AMA=A
19 12 14 18 3eqtr3d φMB=AB=A
20 10 adantr φMB=ABA
21 20 neneqd φMB=A¬B=A
22 19 21 pm2.65da φ¬MB=A
23 22 neqned φMBA