Metamath Proof Explorer


Theorem mnd12g

Description: Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses mndcl.b B=BaseG
mndcl.p +˙=+G
mnd4g.1 φGMnd
mnd4g.2 φXB
mnd4g.3 φYB
mnd4g.4 φZB
mnd12g.5 φX+˙Y=Y+˙X
Assertion mnd12g φX+˙Y+˙Z=Y+˙X+˙Z

Proof

Step Hyp Ref Expression
1 mndcl.b B=BaseG
2 mndcl.p +˙=+G
3 mnd4g.1 φGMnd
4 mnd4g.2 φXB
5 mnd4g.3 φYB
6 mnd4g.4 φZB
7 mnd12g.5 φX+˙Y=Y+˙X
8 7 oveq1d φX+˙Y+˙Z=Y+˙X+˙Z
9 1 2 mndass GMndXBYBZBX+˙Y+˙Z=X+˙Y+˙Z
10 3 4 5 6 9 syl13anc φX+˙Y+˙Z=X+˙Y+˙Z
11 1 2 mndass GMndYBXBZBY+˙X+˙Z=Y+˙X+˙Z
12 3 5 4 6 11 syl13anc φY+˙X+˙Z=Y+˙X+˙Z
13 8 10 12 3eqtr3d φX+˙Y+˙Z=Y+˙X+˙Z