Metamath Proof Explorer


Theorem mnd1id

Description: The singleton element of atrivial monoid is its identity element. (Contributed by AV, 23-Jan-2020)

Ref Expression
Hypothesis mnd1.m M=BasendxI+ndxIII
Assertion mnd1id IV0M=I

Proof

Step Hyp Ref Expression
1 mnd1.m M=BasendxI+ndxIII
2 snex IV
3 1 grpbase IVI=BaseM
4 2 3 ax-mp I=BaseM
5 eqid 0M=0M
6 snex IIIV
7 1 grpplusg IIIVIII=+M
8 6 7 ax-mp III=+M
9 snidg IVII
10 velsn aIa=I
11 df-ov IIIII=IIIII
12 opex IIV
13 fvsng IIVIVIIIII=I
14 12 13 mpan IVIIIII=I
15 11 14 eqtrid IVIIIII=I
16 oveq2 a=IIIIIa=IIIII
17 id a=Ia=I
18 16 17 eqeq12d a=IIIIIa=aIIIII=I
19 15 18 syl5ibrcom IVa=IIIIIa=a
20 10 19 biimtrid IVaIIIIIa=a
21 20 imp IVaIIIIIa=a
22 oveq1 a=IaIIII=IIIII
23 22 17 eqeq12d a=IaIIII=aIIIII=I
24 15 23 syl5ibrcom IVa=IaIIII=a
25 10 24 biimtrid IVaIaIIII=a
26 25 imp IVaIaIIII=a
27 4 5 8 9 21 26 ismgmid2 IVI=0M
28 27 eqcomd IV0M=I