Metamath Proof Explorer


Theorem mndid

Description: A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011)

Ref Expression
Hypotheses mndcl.b B=BaseG
mndcl.p +˙=+G
Assertion mndid GMnduBxBu+˙x=xx+˙u=x

Proof

Step Hyp Ref Expression
1 mndcl.b B=BaseG
2 mndcl.p +˙=+G
3 1 2 ismnd GMndxByBx+˙yBzBx+˙y+˙z=x+˙y+˙zuBxBu+˙x=xx+˙u=x
4 3 simprbi GMnduBxBu+˙x=xx+˙u=x