Metamath Proof Explorer


Theorem mndtcbas

Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
Assertion mndtcbas φ∃!xxB

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 1 2 3 mndtcbasval φB=M
5 sneq x=Mx=M
6 5 eqeq2d x=MB=xB=M
7 2 4 6 spcedv φxB=x
8 eusn ∃!xxBxB=x
9 7 8 sylibr φ∃!xxB