Metamath Proof Explorer
		
		
		
		Description:  The category built from a monoid contains precisely one object.
       (Contributed by Zhi Wang, 22-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mndtcbas.c |  | 
					
						|  |  | mndtcbas.m |  | 
					
						|  |  | mndtcbas.b |  | 
				
					|  | Assertion | mndtcbas |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndtcbas.c |  | 
						
							| 2 |  | mndtcbas.m |  | 
						
							| 3 |  | mndtcbas.b |  | 
						
							| 4 | 1 2 3 | mndtcbasval |  | 
						
							| 5 |  | sneq |  | 
						
							| 6 | 5 | eqeq2d |  | 
						
							| 7 | 2 4 6 | spcedv |  | 
						
							| 8 |  | eusn |  | 
						
							| 9 | 7 8 | sylibr |  |