Metamath Proof Explorer


Theorem mndtcco

Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
mndtchom.x φXB
mndtchom.y φYB
mndtcco.z φZB
mndtcco.o φ·˙=compC
Assertion mndtcco φXY·˙Z=+M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 mndtchom.x φXB
5 mndtchom.y φYB
6 mndtcco.z φZB
7 mndtcco.o φ·˙=compC
8 1 2 mndtcval φC=BasendxMHomndxMMBaseMcompndxMMM+M
9 catstr BasendxMHomndxMMBaseMcompndxMMM+MStruct115
10 ccoid comp=Slotcompndx
11 snsstp3 compndxMMM+MBasendxMHomndxMMBaseMcompndxMMM+M
12 snex MMM+MV
13 12 a1i φMMM+MV
14 eqid compC=compC
15 8 9 10 11 13 14 strfv3 φcompC=MMM+M
16 7 15 eqtrd φ·˙=MMM+M
17 1 2 3 4 mndtcob φX=M
18 1 2 3 5 mndtcob φY=M
19 17 18 opeq12d φXY=MM
20 1 2 3 6 mndtcob φZ=M
21 16 19 20 oveq123d φXY·˙Z=MMMMM+MM
22 df-ov MMMMM+MM=MMM+MMMM
23 df-ot MMM=MMM
24 23 fveq2i MMM+MMMM=MMM+MMMM
25 otex MMMV
26 fvex +MV
27 25 26 fvsn MMM+MMMM=+M
28 22 24 27 3eqtr2i MMMMM+MM=+M
29 21 28 eqtrdi φXY·˙Z=+M