Metamath Proof Explorer


Theorem mntf

Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024)

Ref Expression
Hypotheses mntf.1 A = Base V
mntf.2 B = Base W
Assertion mntf Could not format assertion : No typesetting found for |- ( ( V e. X /\ W e. Y /\ F e. ( V Monot W ) ) -> F : A --> B ) with typecode |-

Proof

Step Hyp Ref Expression
1 mntf.1 A = Base V
2 mntf.2 B = Base W
3 eqid V = V
4 eqid W = W
5 1 2 3 4 ismnt Could not format ( ( V e. X /\ W e. Y ) -> ( F e. ( V Monot W ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) ) : No typesetting found for |- ( ( V e. X /\ W e. Y ) -> ( F e. ( V Monot W ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) ) with typecode |-
6 5 biimp3a Could not format ( ( V e. X /\ W e. Y /\ F e. ( V Monot W ) ) -> ( F : A --> B /\ A. x e. A A. y e. A ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) : No typesetting found for |- ( ( V e. X /\ W e. Y /\ F e. ( V Monot W ) ) -> ( F : A --> B /\ A. x e. A A. y e. A ( x ( le ` V ) y -> ( F ` x ) ( le ` W ) ( F ` y ) ) ) ) with typecode |-
7 6 simpld Could not format ( ( V e. X /\ W e. Y /\ F e. ( V Monot W ) ) -> F : A --> B ) : No typesetting found for |- ( ( V e. X /\ W e. Y /\ F e. ( V Monot W ) ) -> F : A --> B ) with typecode |-