Metamath Proof Explorer
		
		
		
		Description:  A minimal universe contains pairs of subsets of an element of the
       universe.  (Contributed by Rohan Ridenour, 13-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mnuprssd.1 |  | 
					
						|  |  | mnuprssd.2 |  | 
					
						|  |  | mnuprssd.3 |  | 
					
						|  |  | mnuprssd.4 |  | 
					
						|  |  | mnuprssd.5 |  | 
				
					|  | Assertion | mnuprssd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mnuprssd.1 |  | 
						
							| 2 |  | mnuprssd.2 |  | 
						
							| 3 |  | mnuprssd.3 |  | 
						
							| 4 |  | mnuprssd.4 |  | 
						
							| 5 |  | mnuprssd.5 |  | 
						
							| 6 | 1 2 3 | mnupwd |  | 
						
							| 7 | 3 4 | sselpwd |  | 
						
							| 8 | 3 5 | sselpwd |  | 
						
							| 9 | 7 8 | prssd |  | 
						
							| 10 | 1 2 6 9 | mnussd |  |