Metamath Proof Explorer


Theorem mo2icl

Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996)

Ref Expression
Assertion mo2icl xφx=A*xφ

Proof

Step Hyp Ref Expression
1 eqeq2 y=Ax=yx=A
2 1 imbi2d y=Aφx=yφx=A
3 2 albidv y=Axφx=yxφx=A
4 3 imbi1d y=Axφx=y*xφxφx=A*xφ
5 equequ2 y=zx=yx=z
6 5 imbi2d y=zφx=yφx=z
7 6 albidv y=zxφx=yxφx=z
8 7 19.8aw xφx=yyxφx=y
9 df-mo *xφyxφx=y
10 8 9 sylibr xφx=y*xφ
11 4 10 vtoclg AVxφx=A*xφ
12 eqvisset x=AAV
13 12 imim2i φx=AφAV
14 13 con3rr3 ¬AVφx=A¬φ
15 14 alimdv ¬AVxφx=Ax¬φ
16 alnex x¬φ¬xφ
17 nexmo ¬xφ*xφ
18 16 17 sylbi x¬φ*xφ
19 15 18 syl6 ¬AVxφx=A*xφ
20 11 19 pm2.61i xφx=A*xφ