Metamath Proof Explorer


Theorem moantr

Description: Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018)

Ref Expression
Assertion moantr *xψxφψxψχxφχ

Proof

Step Hyp Ref Expression
1 exancom xφψxψφ
2 1 anbi1i xφψxψχxψφxψχ
3 2 anbi2i *xψxφψxψχ*xψxψφxψχ
4 3anass *xψxψφxψχ*xψxψφxψχ
5 3 4 bitr4i *xψxφψxψχ*xψxψφxψχ
6 mopick2 *xψxψφxψχxψφχ
7 5 6 sylbi *xψxφψxψχxψφχ
8 3anass ψφχψφχ
9 8 exbii xψφχxψφχ
10 exsimpr xψφχxφχ
11 9 10 sylbi xψφχxφχ
12 7 11 syl *xψxφψxψχxφχ
13 impexp *xψxφψxψχxφχ*xψxφψxψχxφχ
14 12 13 mpbi *xψxφψxψχxφχ