Metamath Proof Explorer


Theorem mod2xnegi

Description: Version of mod2xi with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014)

Ref Expression
Hypotheses mod2xnegi.1 A
mod2xnegi.2 B0
mod2xnegi.3 D
mod2xnegi.4 K
mod2xnegi.5 M0
mod2xnegi.6 L0
mod2xnegi.10 ABmodN=LmodN
mod2xnegi.7 2B=E
mod2xnegi.8 L+K=N
mod2xnegi.9 D N+M=KK
Assertion mod2xnegi AEmodN=MmodN

Proof

Step Hyp Ref Expression
1 mod2xnegi.1 A
2 mod2xnegi.2 B0
3 mod2xnegi.3 D
4 mod2xnegi.4 K
5 mod2xnegi.5 M0
6 mod2xnegi.6 L0
7 mod2xnegi.10 ABmodN=LmodN
8 mod2xnegi.7 2B=E
9 mod2xnegi.8 L+K=N
10 mod2xnegi.9 D N+M=KK
11 nn0nnaddcl L0KL+K
12 6 4 11 mp2an L+K
13 9 12 eqeltrri N
14 13 nnzi N
15 zaddcl NDN+D
16 14 3 15 mp2an N+D
17 4 nnnn0i K0
18 17 17 nn0addcli K+K0
19 18 nn0zi K+K
20 zsubcl N+DK+KN+D-K+K
21 16 19 20 mp2an N+D-K+K
22 13 nncni N
23 zcn DD
24 3 23 ax-mp D
25 22 24 addcli N+D
26 4 nncni K
27 26 26 addcli K+K
28 25 27 22 subdiri N+D-K+K N=N+D NK+K N
29 28 oveq1i N+D-K+K N+M=N+D N-K+K N+M
30 25 22 mulcli N+D N
31 5 nn0cni M
32 27 22 mulcli K+K N
33 30 31 32 addsubi N+D N+M-K+K N=N+D N-K+K N+M
34 10 oveq2i N N+D N+M= N N+KK
35 22 26 26 adddii NK+K=NK+NK
36 34 35 oveq12i N N+D N+M-NK+K= N N+KK-NK+NK
37 22 24 22 adddiri N+D N= N N+D N
38 37 oveq1i N+D N+M= N N+D N+M
39 22 22 mulcli N N
40 24 22 mulcli D N
41 39 40 31 addassi N N+D N+M= N N+D N+M
42 38 41 eqtr2i N N+D N+M=N+D N+M
43 22 27 mulcomi NK+K=K+K N
44 42 43 oveq12i N N+D N+M-NK+K=N+D N+M-K+K N
45 36 44 eqtr3i N N+KK-NK+NK=N+D N+M-K+K N
46 mulsub NKNKNKNK= N N+KK-NK+NK
47 22 26 22 26 46 mp4an NKNK= N N+KK-NK+NK
48 6 nn0cni L
49 22 26 48 subadd2i NK=LL+K=N
50 9 49 mpbir NK=L
51 50 50 oveq12i NKNK=LL
52 47 51 eqtr3i N N+KK-NK+NK=LL
53 45 52 eqtr3i N+D N+M-K+K N=LL
54 29 33 53 3eqtr2i N+D-K+K N+M=LL
55 13 1 2 21 6 5 7 8 54 mod2xi AEmodN=MmodN