Metamath Proof Explorer


Theorem modm1nep1

Description: A nonnegative integer less than a modulus greater than 2 plus/minus one are not equal modulo the modulus. (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypothesis modm1nep1.i I = 0 ..^ N
Assertion modm1nep1 N 3 Y I Y 1 mod N Y + 1 mod N

Proof

Step Hyp Ref Expression
1 modm1nep1.i I = 0 ..^ N
2 1elfzo1ceilhalf1 N 3 1 1 ..^ N 2
3 2 adantr N 3 Y I 1 1 ..^ N 2
4 eqid 1 ..^ N 2 = 1 ..^ N 2
5 4 1 modmknepk N 3 Y I 1 1 ..^ N 2 Y 1 mod N Y + 1 mod N
6 3 5 mpd3an3 N 3 Y I Y 1 mod N Y + 1 mod N