Metamath Proof Explorer


Theorem modom

Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion modom *xφx|φ1𝑜

Proof

Step Hyp Ref Expression
1 moeu *xφxφ∃!xφ
2 imor xφ∃!xφ¬xφ∃!xφ
3 abn0 x|φxφ
4 3 necon1bbii ¬xφx|φ=
5 sdom1 x|φ1𝑜x|φ=
6 4 5 bitr4i ¬xφx|φ1𝑜
7 euen1 ∃!xφx|φ1𝑜
8 6 7 orbi12i ¬xφ∃!xφx|φ1𝑜x|φ1𝑜
9 brdom2 x|φ1𝑜x|φ1𝑜x|φ1𝑜
10 8 9 bitr4i ¬xφ∃!xφx|φ1𝑜
11 1 2 10 3bitri *xφx|φ1𝑜