Metamath Proof Explorer


Theorem modsubi

Description: Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses modsubi.1 N
modsubi.2 A
modsubi.3 B0
modsubi.4 M0
modsubi.6 AmodN=KmodN
modsubi.5 M+B=K
Assertion modsubi ABmodN=MmodN

Proof

Step Hyp Ref Expression
1 modsubi.1 N
2 modsubi.2 A
3 modsubi.3 B0
4 modsubi.4 M0
5 modsubi.6 AmodN=KmodN
6 modsubi.5 M+B=K
7 2 nnrei A
8 4 3 nn0addcli M+B0
9 8 nn0rei M+B
10 6 9 eqeltrri K
11 7 10 pm3.2i AK
12 3 nn0rei B
13 12 renegcli B
14 nnrp NN+
15 1 14 ax-mp N+
16 13 15 pm3.2i BN+
17 modadd1 AKBN+AmodN=KmodNA+BmodN=K+BmodN
18 11 16 5 17 mp3an A+BmodN=K+BmodN
19 2 nncni A
20 3 nn0cni B
21 19 20 negsubi A+B=AB
22 21 oveq1i A+BmodN=ABmodN
23 10 recni K
24 23 20 negsubi K+B=KB
25 4 nn0cni M
26 23 20 25 subadd2i KB=MM+B=K
27 6 26 mpbir KB=M
28 24 27 eqtri K+B=M
29 28 oveq1i K+BmodN=MmodN
30 18 22 29 3eqtr3i ABmodN=MmodN