Metamath Proof Explorer


Theorem moop2

Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis moop2.1 BV
Assertion moop2 *xA=Bx

Proof

Step Hyp Ref Expression
1 moop2.1 BV
2 eqtr2 A=BxA=y/xByBx=y/xBy
3 vex xV
4 1 3 opth Bx=y/xByB=y/xBx=y
5 4 simprbi Bx=y/xByx=y
6 2 5 syl A=BxA=y/xByx=y
7 6 gen2 xyA=BxA=y/xByx=y
8 nfcsb1v _xy/xB
9 nfcv _xy
10 8 9 nfop _xy/xBy
11 10 nfeq2 xA=y/xBy
12 csbeq1a x=yB=y/xB
13 id x=yx=y
14 12 13 opeq12d x=yBx=y/xBy
15 14 eqeq2d x=yA=BxA=y/xBy
16 11 15 mo4f *xA=BxxyA=BxA=y/xByx=y
17 7 16 mpbir *xA=Bx