Metamath Proof Explorer


Theorem mopn0

Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion mopn0 D∞MetXJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 mopntop D∞MetXJTop
3 0opn JTopJ
4 2 3 syl D∞MetXJ