Metamath Proof Explorer


Theorem rnblopn

Description: A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion rnblopn D∞MetXBranballDBJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 blssopn D∞MetXranballDJ
3 2 sselda D∞MetXBranballDBJ