Metamath Proof Explorer


Theorem mopnin

Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion mopnin D∞MetXAJBJABJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 mopntop D∞MetXJTop
3 inopn JTopAJBJABJ
4 2 3 syl3an1 D∞MetXAJBJABJ