Metamath Proof Explorer


Theorem mosssn

Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion mosssn AB*xxA

Proof

Step Hyp Ref Expression
1 sssn ABA=A=B
2 mo0 A=*xxA
3 mosn A=B*xxA
4 2 3 jaoi A=A=B*xxA
5 1 4 sylbi AB*xxA