Metamath Proof Explorer


Theorem mpaadgr

Description: Minimal polynomial has degree the degree of the number. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaadgr A𝔸degminPoly𝔸A=deg𝔸A

Proof

Step Hyp Ref Expression
1 mpaalem A𝔸minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1
2 simpr1 minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1degminPoly𝔸A=deg𝔸A
3 1 2 syl A𝔸degminPoly𝔸A=deg𝔸A